
Moon� Soul� Graduate� School� of� Future� Strategy,�

KAIST

Working� Papers

Number 2018-02

Government R&D Investment Decision-making in the Energy 
Sector: LCOE Foresight Model Reveals What Regression 
Analysis Cannot

Jungwoo� Lee

Moon� Soul� Graduate� School� of� Future� Strategy,� KAIST�

Jae-Suk� Yang

Moon� Soul� Graduate� School� of� Future� Strategy,� KAIST�

    

Copyright 2018 by Jungwoo Lee, and Jae-Suk Yang. All rights reserved. KAIST Moon Soul 
working papers are distributed for discussion and comment purpose only. Any additional 
reproduction for other purposes requires the consent of the copyright holder.



Government R&D Investment Decision-making in the Energy Sector: LCOE Foresight 

Model Reveals What Regression Analysis Cannot 

Jungwoo Lee a, b, Jae-Suk Yanga 

a Moon Soul Graduate School of Future Strategy,  

Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 

b Center for R&D Technology Policy, Korea Institute of Energy Technology Evaluation  

and Planning, Seoul 06175, Republic of Korea 

Corresponding author 

Jae-Suk Yang 

Telephone Number: +82 42 350 4031 

E-mail address: yang@kaist.ac.kr 

Acknowledgement 

This work was in part supported by the Ministry of Education of the Republic of Korea and 

the National Research Foundation of Korea (NRF-2016S1A5A8019490).  



Government R&D Investment Decision-making in the Energy Sector: LCOE Foresight 

Model Reveals What Regression Analysis Cannot 

Abstract 

For governments that prioritize R&D investment, future decision-making depends on 

performance-based budgeting. Governments evaluate outputs and outcomes of R&D 

programs regularly and budget for next year on the basis of program assessment. However, 

existing assessment methodology disregards long-term technology development; in sectors 

such as the energy sector, it takes a long time for technologies to progress from R&D to 

commercialization. This paper is a comparative analysis of existing R&D assessment models 

and the new foresight model developed from the point of view of government. A regression 

analysis is conducted using probit and ordinary least squares (OLS) models to analyze the 

performance of projects completed based on past R&D investment. The foresight model, 

which is based on the levelized cost of electricity (LCOE), is discussed in comparison. 

Results of the regression analysis show that government investment in market expansion of 

renewable energy technologies is minimal in Korea. In contrast, the LCOE foresight model 

results show that renewable energy technologies are appropriate targets for government R&D 

investment. The foresight model should be utilized for government R&D decision-making in 

the energy sector because it brings to light hidden information, including learning rates and 

technology dynamics, which remains unaddressed when analyzing using existing R&D 

assessment models. 

Keywords: R&D assessment; Government R&D; LCOE foresight; R&D decision-making; 

R&D investment 



1. Introduction 

In the late 1980s, performance-based budgeting was introduced to government-supported 

programs in accordance with the demand for greater efficiency in the public finance sector 

during the global recession. Performance-based budgeting entails evaluation of outcomes as 

compared to resources and activities, as opposed to the previous administrative focus on 

inputs and processes. Performance-based budgeting has since been applied to government-

supported R&D programs [1–4]. Governments assess the performance of R&D programs 

annually, and, based on these assessments, the budget for next year is determined. 

Assessment of government-supported R&D programs has been analyzed in previous studies 

focusing on: (1) R&D logic models, (2) analytical methodology, and (3) empirical analysis 

(certain countries only). The main topic and research questions of these studies are listed in 

Table 1. 

Insert Table 1 about here 

Previous methods of assessment of government-supported R&D programs have advantages 

in terms of data collection and apparent correlations between investment and performance. 

However, future trends in technology and commensurate R&D investment cannot be 

predicted using these methods . 1

In the energy sector, three key factors have been identified as predicting trends in 

technological development. First, performance improves in accordance with lowering costs 

 From the perspective of performance evaluation related to R&D investment, forward-1

looking assessments are mostly qualitative analyses. Representative methods are AHP, 
Delphi, and matrix analysis. Unlike preceding research, this research was conducted within 
the analytical framework called performance-based R&D budgeting using quantitative 
analysis. Thus far, no study has been conducted from this viewpoint.



through the learning process [5–14]. Second, market entry in the energy technology sector is 

determined by competition in the energy industry [15–18]. Third, technological 

interdependence results in characteristic patterns of technological co-evolution such as 

natural gas power generation or ESS for load shaping and intermittent generation of 

renewable energy power plants [15,19,20]. With these factors in mind, we can identify six 

stages of technological development (Table 2) [8,15,20-21]. 

Insert Table 2 about here 

From the government’s standpoint, the timing of investment and which technologies to 

support must be considered. Government-supported R&D investment must be distinguished 

from private R&D investment that focuses on profit-seeking. In the past, researchers have 

concluded that governments are wise to engage where social welfare is high and the private 

sector has avoided investing due to lack of incentive [25,26]. In many cases, governments 

must focus on development of technologies that require huge budgets and long-term 

investment and involve changes in infrastructure [27–29]. Another rationale for government 

engagement is to overcome market inefficiencies and outdated practices [30,31]. Thus, 

investment is often made in new technologies ranging from inventions to niche market 

commercialization rather than pervasive or saturation technologies. 

This paper is a comparative analysis of the effectiveness of the regression and levelized cost 

of electricity (LCOE) foresight models from the point of view of government-assisted R&D 

programs. Of course, not all countries evaluate the performance of government R&D 

investments using a regression method. Depending on the country, the insight of experts is 

valued when it comes to R&D investment. In many cases, the “informal and consultative” 

method is adopted, especially in EU countries, while the “formal and technical” method 

based on quantitative evaluation is used in other cases [32]. However, among the top five 



countries in terms of size of government R&D, the U.S., Japan, Germany, and Korea, all 

(with the exception of France) have adopted regression-based econometrics as a default 

evaluation method [33–36]. Regression analyses focus on correlations between past 

government R&D investment and sales of beneficiary companies. However, using the LCOE 

foresight model, we predict changes in future energy technologies based on the learning 

curve, market share, and their interaction. In our comparative analysis, we show that the 

LCOE foresight model provides information about technological trends that cannot be 

obtained in a regression analysis. Finally, we discuss the political implications of our results 

for decision-making by governments regarding R&D investment. 

2. Research Methodology 

2.1. Technologies included in the analysis 

In this study, six technologies are analyzed: solar PV, wind, fuel cell, new coal, new gas 

combined cycle gas turbine (CCGT) and nuclear energy. The Korean government 

concentrated support on these power-generating technologies from 2008 to 2014. The 

technologies subjected to analysis are shown in Table 3. The regression analysis included 

data about past R&D investment by the Korean government and the sales of beneficiary 

companies. All data included in the LCOE foresight model, such as fixed costs and operating 

costs, was predicted on the basis of the environment in Korea. 

Insert Table 3 about here 

2.2. Research process 

We conducted a comparative analysis of the results of a regression analysis and an analysis 

using the LCOE foresight approach. The process is illustrated in Figure 1. 



Insert Figure 1 about here 

2.2.1. Regression analysis 

We conducted a survey including companies that received R&D assistance from the 

government in the period from 2008 to 2014 to determine the correlation between 

government support and the sales of beneficiary companies. Survey subjects included 

application technologies with TRL(Technology Readiness Level) between 4 and 6 at the 

beginning of the process of R&D investment by the government, and commercialization 

technologies between TRL 7 and 9 as the final technology development target. Survey items 

represented variables expected to affect the sales of beneficiary companies. The definitions of 

the variables are listed in Table 4. 

Insert Table 4 about here 

We explored the correlation between government R&D investment and sales of beneficiary 

companies by conducting a regression analysis with sales of beneficiary companies as the 

dependent variable and all other variables as independent variables. The reason for defining 

the sales of beneficiary companies as the dependent variable is that the priority of 

technological investment in the application stage in the power generation sector is realization 

of the energy mix presented in the national plan. Most countries with medium- and long-term 

energy plans, including OECD members, regard the application stage of R&D development 

and its correlation with performance in the field as important indicators of investment success 

[37,38]. A probit model was used to investigate the relationship between government R&D 

investment and successful sales in different technical fields including all companies. For all 

companies included in the model in which sales were generated from the R&D project, the 

value was set to be 1. For companies in which no sales were generated from the R&D project, 



the value was set to be 0. Then, an ordinary least squares (OLS) analysis was conducted to 

verify the association between government R&D investment and sales growth in beneficiary 

companies in which sales were generated from the R&D project. 

2.2.2. LCOE foresight model 

Two scenarios were established for estimation of the LCOE foresight model. The baseline 

scenario is the current policy scenario, in which current energy policies and levels of 

government R&D investment are maintained, as announced by the government. The 

enhanced R&D scenario is the one in which the technical performance matches the targets 

proposed in the National R&D Roadmap due to increased government R&D investment, in 

contrast with the baseline scenario [39]. Comparing these two scenarios makes it possible to 

confirm the effects of investment in technical development by the government. 

The LCOE foresight model consists of three steps. First, we derive the cost reduction 

potential by segregating key components of the system and expect its performance to reflect 

R&D investment by the government. Then, based on the future performance of the system, 

we calculate the amount of electricity generated in the development of new technologies, also 

considering interactions among them. In the final step, we examine all six technologies in the 

LCOE foresight model using cost reduction potential data and electricity generation data 

obtained in the previous steps. 

All data used to predict the cost reduction potential and the amount of electricity generated 

was gathered by a technical committee composed of 43 domestic experts [40]. This 

committee estimated the technical specifications for six energy-generating technologies over 

the course of several meetings. We also reviewed the technical specifications published in 

previous research, using data from these studies to validate the committee’s estimates [41–

44]. 



First step: Derive cost reduction potential 

Costs of generating power can be divided into capital, operating, and fuel expenditures. In 

order to predict capital expenditure, key parameters affecting cost reduction were identified 

and the overall cost of generating power was determined. Then, the cost reduction potential 

was derived according to changes in key performance-related parameters. Examples for 

predicting capital expenditure and cost reduction parameters and the process through which 

costs were reduced are shown in the Figure 2. For operating expenditure, future levels were 

predicted in contrast with a set standard through the convergence of expert opinions. For fuel 

expenditure, the predictions of the Energy Information Administration were utilized [45]. 

Details about key parameters for cost reduction, technology performance, system 

configuration cost are shown in the attached Appendix. 

Insert Figure 2 about here 

Second step: Calculate the amount of electricity generated 

The TIMES model is used to calculate the amount of electricity generated for new 

technologies. The TIMES model enables us to analyze a combination of technologies that 

minimize the total cost of a system under the given constraints. The objective function 

minimizes the discounted cost of the energy system during the period of analysis. The 

objective function can be expressed as follows [46,47]: 

!

, 

where NPV is the net present value of the total cost for all regions, NPER is the set of years 

NPV =
R

∑
r=1

NPER

∑
t=1

(1 + d)NYRS(1 − t) · A NNCOST (r, t) · (1 + (1 + d)−1+(1 + d)−2 + ⋯ + (1 + d)1−NYRS



included in the analysis, NYRS is the number of years in each period t, r is the set of regions, 

ANNCOST(r,t) is the total annual cost in region r and period t, and d is the general discount 

rate.  

The following constraints are used to calculate electricity in the TIMES model of this study 

[48–50]. First, to satisfy the capacity transfer constraints, the total available capacity for each 

technology whose physical life has not yet ended, in region r, in period t is equal to the sum 

of investments calculated in the model at past and current periods, plus capacity in place prior 

to the modeling horizon that is still available. Second, capacity constraint is the amount of 

activity that for each technology, period ! , region ! , and timeslice !  may not exceed its 

available capacity, as specified by a user-defined availability factor. Third, by commodity 

balance constraint, the production plus imports from other regions of each commodity must 

balance the amount consumed in the region or exported to other regions. The commodity 

consists of energy carriers such as electricity, energy services, and emissions that are either 

produced or consumed by energy sources, sinks, technologies, and demands. 

The model is run over the 20-year period from 2015–2035 in accordance with the period in 

which the second Korea Energy Master Plan will be implemented [51]. The analysis was 

conducted for each successive five-year period from 2015. The discount rate was set at 5.5% 

to convert the future cost to the present value based on a reference value for the economic 

analysis on public investment projects in the Republic of Korea [52]. For this study, we 

gathered data for conventional electricity-generating technologies from the historical data on 

the Korean electric power system [53,54]. Also, we developed another data set for new 

technologies based on the results of a survey undertaken by the technical committee. The 

electricity demand during the time period follows the second Korea National Master Plan, 

and the government's plans to retire existing plants and build new power plants are 

incorporated into the model as constraints [51]. 

Third step: LCOE foresight 

The LCOE reflects investments during the life of a technology in the power-generating 

t r s



facilities divided by the amount of power produced during the same period. It represents the 

per-kilowatt-hour cost in discounted real dollars of operating a generating plant over an 

assumed financial life and duty cycle [55]. Main inputs necessary to calculating LCOE 

include capital costs, fuel costs, and fixed and variable operations and maintenance (O&M) 

costs for each plant type. The availability of various incentives can also impact the 

calculation of LCOE. The LCOE is calculated as follows [44,56–58]: 

! , 

where LCOE = the levelized cost of generating electricity, It = investment expenditure in year 

t, CAPEX (capital expenditure), Mt = operations and maintenance expenditure in year t, 

OPEX (operating expenditure), Ft = fuel expenditure in year t, Et = electricity generated, n = 

expected lifetime of a system, and r = discount rate. LCOE was predicted by technology and 

year by including the cost reduction potential, determined in the first step, and the amount of 

electricity generated, calculated in the second step, in the LCOE formula. 

3. Results 

3.1. Regression analysis 

The results of a probit analysis including all companies that received R&D funding from the 

government are shown in Table 5. These results confirm a significant effect of government 

investment only in firms specializing in conventional power plant-based technology. There 

was no correlation between government R&D investment and the sales of beneficiary 

companies specializing in renewable power-generating technology. Instead, a negative 

significant relationship was observed between R&D investment in beneficiary companies and 

the sales of those companies. This indicates that the private sector failed to commercialize, 

although they invested in renewable energy technologies in accordance with the government 

LCOE =  
Total Expenditure

Total Electricity Generation
=  

∑n
t=1

It + Mt + Ft

(1 + r)t

∑n
t=1

Et

(1 + r)t



investment signals. The higher the technology level in the early support stage, the higher the 

success rate of commercialization of conventional power plant-based technology. This 

technology requires a high level of stability and reliability, but no significant relationship to 

renewable energy is evident. Regardless of the technology, higher values for TRL were 

observed for technologies that were closer to commercialization at the initial stage of R&D, 

and, for those firms in which investment increased further after R&D, the possibility of 

commercialization continues to increase. However, the most important result from the probit 

analysis is that a significant effect of government R&D investment is evident only in firms 

specializing in conventional power plant-based technology. For those specializing in 

renewable technologies, no significant relationship to government R&D investment is 

observed. 

Insert Table 5 about here 

Second, the results of the OLS analysis including those companies that succeeded in 

commercialization are listed in Table 6. We extracted data for these successful companies 

from among all companies that received government R&D funding and applied the logarithm 

to the amount variable to satisfy the normal distribution assumption of the sample population. 

Insert Table 6 about here 

When analyzing the data for companies that succeeded in terms of sales, similar results were 

seen to those of the probit analysis including all companies. The results revealed a significant 

relationship between government investment and sales in companies specializing in 

conventional power plant-based new technology. However, in firms specializing in renewable 

technologies, no correlation was found between government R&D investment and sales. In 

addition, no significant relationship was observed between sales of beneficiary companies 

and any other independent variable included in the analysis. So, what is the political 



implication of the results from the regression analysis from government R&D point of view? 

Using current methods of assessment of government-supported R&D programs, we must 

conclude that future government R&D investment should be focused on conventional power 

plant-based new technology judging by the investment effects. In other words, government 

R&D investment in renewable energy technologies should be reduced in those firms showing 

poor performance, and funding for conventional power plant-based new technologies should 

be increased. However, there are many unresolved problems resulting from deciding the 

direction of future R&D investment based on past performance. 

3.2. LCOE foresight model 

The LCOE foresight model is now utilized to determine increases in technology performance 

and cost reduction according to government R&D investment. These factors determine the 

values for market penetration and the CAPEX and OPEX, ultimately also affecting the 

LCOE. Technologies subjected to analysis in 2015 are ranked by LCOE as follows: fuel cell, 

solar PV, wind power, new gas CCGT, new coal, and nuclear energy (Figure 3). The LCOE is 

relatively low for conventional power plant-based new technology, the standard against 

which others compete. By contrast, the LCOE is relatively high for renewable technology, 

varying according to region. 

Insert Figure 3 about here 

3.2.1. Learning effect 

For many products and services, unit costs decrease with the accumulation of experience. 

This kind of technological progress is referred to as a learning curve [59,60]. The learning 

rate is now increasingly being applied in research models to evaluate the long-term effects of 

energy technology [10,12]. 



The equation for the single-factor learning curve is as follows [61,62] : 

!  

where !  represents the cost per unit at time t, !  means cumulative production or 

installed capacity, and α is the learning index (LI). 

The so-called progress ratio (PR) and the learning rate (LR) are defined as follows: 

!  

where UCt represents the unit cost, CUMt means cumulative production or installed capacity, 

and α is the learning index (LI). Progress ratio (PR) and learning rate (LR) are variables 

commonly used to explain the learning effect instead of LI for a more intuitive 

understanding. Learning rate (LR) is defined as cost reduction per doubling of cumulative 

production. 

The learning curve in the current policy scenario is shown in Figure 4. The technology with 

the highest learning rate from 2015 to 2035 is solar PV, followed by wind power. It is 

expected that the LCOE of the fuel cell technology will be reduced to 41% in 2035 compared 

to 2015, as it shows ongoing development in the stages of R&D and demonstration. 

However, additional market penetration during the period of analysis would be difficult due 

to the lack of price competitiveness when compared to other power-generating technologies. 

Thus, estimation of the learning rate is impossible. New coal, new gas CCGT, and nuclear 

power, unlike the renewable energy technologies, showed a learning rate close to 0% during 

the forecasting periods (Table 7). This means that it is unrealistic to expect a further price 

reduction in conventional power plant-based new technology at current levels of government 

investment in R&D. 

UCt = UCo(
CUMt

CUM0
)
α

UCt CUMt

Progress Ratio(PR) =
UCt

UC0
= (

2CUM0

CUM0
)
α

= 2α,  Learning rate(LR) = 1 − PR



Insert Figure 4 about here 

Insert Table 7 about here 

In the enhanced R&D scenario, the LCOE values for the technologies generally decrease 

compared to the current policy scenario. Increases in the learning rate of the renewable 

technologies and supply expansion data are presented in Figure 5. As in the current policy 

scenario, values determined by the LCOE foresight model are rapidly reduced, and the 

highest learning rate is observed for solar PV from 2015 to 2035 (Table 8). Greater support 

for the fuel cell energy option, which failed to enter into markets in the current policy 

scenario, is expected as of 2020 in the enhanced R&D scenario. In addition, the learning rate 

is expected to increase from 49% to 57%, which is second only to solar power. Wind power 

showed a considerable change in learning rate from 1.6% to 7.9% per year when compared to 

the current policy scenario. Interestingly, in 2035, the LCOE values of the renewable 

technologies in the current policy scenario can be ranked in the following order: fuel cell, 

solar PV, and wind power, but in the enhanced R&D scenario, the order is as follows: wind 

power, fuel cell, and solar PV. This indicates that the ranking of technologies may vary 

depending on the extent of government investment in R&D. Results were also different for 

conventional power plant-based new technology compared to the current policy scenario. In 

the case of new coal, in which a learning rate increase of 2.9 to 6.2% is evident between 2015 

and 2025 in the current policy scenario, a lower increase in learning rate of 2.3 to 4.2% is 

observed in the enhanced R&D scenario. This can be explained in two ways. First, in 

response to the development of the new gas CCGT technology, the supply of new coal was 

relatively diminished. Second, the percentage of the renewable energy in the electricity 

market increased as renewable energy technology began to be disseminated throughout the 

market. The overall learning rate of the conventional power plant-based new technology was 

expected to maintain its very low level compared to the renewable energy, despite the fact 

that the learning rate of the new gas CCGT is very high. The learning rate of the nuclear 

power was expected to remain close to 0% regardless of the scenario. New coal and new gas 



CCGT were associated with learning rates of less than 4.2% and 9.3%, respectively, during 

the analysis period. 

Insert Figure 5 about here 

Insert Table 8 about here 

3.2.2. Technology dynamics 

If technologies develop according to the extent of government support to enter into the 

market, the market share of each technology should reflect the interaction within the market. 

Assuming that the total amount of power produced by the new technologies included in this 

analysis is 100%, we defined this position as the percentage of total power output of each 

new technology. The results for the current policy scenario show a reduction in market share 

for new coal, an increase for nuclear power, and a U-shaped form for new gas CCGT (Figure 

6). In terms of technology development, the growth of new coal included a phase from 

saturation to senescence, and for nuclear power, a phase from pervasive to saturation was 

observed. However, all renewable technologies together (solar PV, wind power, and fuel cell 

technology) occupied less than 3% of the market during the phase from innovation to niche 

market. 

Insert Figure 6 about here 

In the enhanced R&D scenario, changes in market share differed compared to the current 

policy scenario (Figure 7). In the case of new coal, as in the current policy scenario, it was 

expected to go through the stages from saturation to senescence. However, the market share 

for new coal would be reduced to 42% when analyzed in terms of total electricity production 



in 2035, and the reduction in market share proceeds more rapidly after 2030. Nuclear power 

progresses from pervasive to saturation in the current policy scenario, but in the enhanced 

R&D scenario, it shows signs of entering into the senescence beyond the saturation stage. 

Renewable technologies, which failed to expand their market shares in the current policy 

scenario, were expected to succeed in entering into the market in the following order after 

2030: wind power, solar PV, and fuel cell technology. Expanding of the market share for 

renewable technologies represents the transition to the pervasive diffusion stage in 2035 

beyond the niche market stage in 2030. The power generated by renewable technologies was 

expected to increase by 16% compared with total power. 

Insert Figure 7 about here 

The expected learning rate and technology dynamics as a result of increased government 

investment in R&D in the enhanced R&D scenario are presented in Table 9. When 

government investment in R&D increases, an increase in learning rate of more than 12% for 

renewable technologies was observed, which affected market penetration, expansion, and 

cost reduction. As for the market share, the model predicted that the current market share of 

3% for all renewable technologies would expand to 16% by 2035, and that fuel cell 

technology will have progressed to the stage of the niche market, and that solar PV and wind 

technology will have progressed to the stage of pervasive diffusion. On the other hand, a 

lower learning rate of less than 3% is observed for conventional power plant-based new 

technology during the same period despite an increase in government investment in R&D 

(except for new gas CCGT). At this point, new coal and nuclear energy, currently at the 

saturation stage, would progress to the stage of senescence. New gas CCGT would progress 

from the senescence stage to the pervasive diffusion stage. These unusual results can be 

explained in two ways. First, an increase in new gas CCGT occurs to cope with volatility due 

to expansion of renewable energy. The intermittent problem of renewable energy causes a 

time discrepancy between energy demand and supply. For this reason, the reserve margin 

becomes higher when renewable energy is diffuse. Gas CCGT will diffuse once again with 



flexible backup facilities after 2030, when the diffuse of renewable energy will continue. 

Second, the amount of gas CCGT power generation will increase in order to offset the decline 

in base load power generation due to new coal and nuclear power reduction. Gas CCGT will 

be re-diffused as the most economical power source to replace existing base load power 

generation during the analysis period due to improved efficiency in power generation and 

operating rates. 

Insert Table 9 about here 

4. Conclusions and Policy Implications 

Implications with regard to future government R&D investment decision-making from the 

comparison of the regression analysis and the LCOE foresight analysis are as follows. 

First, in decision-making regarding investing in energy-generating technologies, governments 

should take into account the effects of long-term R&D investment in addition to short-term 

performance assessment. Energy-generating technologies require large-scale, long-term 

investment, and the return on that investment takes a long time to be realized. Some new 

technologies, such as fuel cell technology, require infrastructure changes as well as R&D 

investment for successful dissemination. In addition, energy-generating technologies have a 

long life span; for example, the lifespan of wind power is 20~25 years, that of solar PV is 30 

years, that of fuel cell technology is 10~15 years, that of thermal power is 20~30 years, and 

that of nuclear power is 60 years. Changing the direction of investment midstream is difficult 

once government funds have been committed. Analyses of past investment performance 

cannot reflect these characteristics of energy-generating technologies. The results of the 

regression analysis in this paper demonstrate low performance for renewable energy 

technologies in terms of commercialization and return on investment in the short run; 

however, these technologies will undoubtedly replace existing energy-generating 



technologies in the long run as we can see through the LCOE analysis. 

Second, by analyzing the learning effect of R&D investment by technology, the government 

can choose investment priority, investment timing, and investment duration. To begin with, 

based on the reduction ratio on investment in the LCOE analysis, the technology with the 

highest learning rate should be the investment priority. In general, for technologies at 

development stages between initial innovation and niche level, the learning rates are 

generally higher, while for technologies at the pervasive diffusion level or later, the learning 

rates are lower. However, there is a difference in the change in learning rate according to 

government R&D investment even among technologies at the same development stage such 

as fuel cell, solar power, and wind power. Thus, estimating the learning rate by technology 

based on R&D investment can be a standard for enhancing the efficiency of government 

R&D investment. 

The learning rate also provides information on how long the R&D investment should last at a 

certain juncture. For example, considering the change in the learning rate of solar PV due to 

R&D investment, the cost savings will be significant in the short term as a result of early 

investment from 2015, and the continuing period of investment will be 15 years in the future. 

In addition, the LCOE foresight model identifies key drivers of changes in the learning rate, 

which have not been considered in previous research. Using this model, it is possible to 

identify the key factors influencing the learning rate and the influence level of each factor, 

which cannot be done using the methods employed in previous research on the learning 

curve. 

Third, the improvement of the learning rate through R&D investment does not always 

guarantee successful technology diffusion. Concerning the degree of improvement in the 

learning rate, the technology development stage is significant, but even for technologies that 

are beyond the saturation stage, performance improvement continues. For example, 

technologies such as PV and fuel cell, in which the learning rate rises sharply according to 

R&D investment, will take longer than 15 years to replace existing mature technologies. 



Governments should consider the learning rate at the initial technology development stage as 

well as continuous improvement during the maturing process in the mid to long term. Next, 

in the case of co-evolving technologies, diffusion proceeds independently from a potential 

government R&D investment. For instance, the learning rate of gas CCGT improves by an 

average of 5.3% in the government R&D investment scenario as compared to the base 

scenario in 2015–2035, but the market share tends to decrease. Concerning gas CCGT, which 

diffuses with other technologies such as PV and wind in the early stage, it may be desirable to 

induce diffusion through market mechanisms rather than government-led R&D investment. 

Finally, technologies in which the product and the complement form a single unit together 

cannot diffuse early on with only R&D investment in the power generation system. As for 

fuel cell, the diffusion of technology must be accompanied by reductions in the cost of power 

generation systems as well as the construction of complementary components such as 

hydrogen production facilities, supply chains, and storage facilities. In the case of such 

technologies, investment in the power generation system and infrastructure should be entailed 

together.

Government R&D investment is essentially an act of referring to the value of the future and 

investing in the present. However, many countries in which governments have engaged in 

R&D investment are determining their future investment directions based on the assessment 

of current R&D programs. The future value of energy-generating technologies can be 

estimated by analyzing the learning effect and technology dynamics. Although the foresight 

model, which analyzes performance, cost, and interaction effects in the development of future 

technologies, inherently entails greater uncertainty, it can be minimized using a systematic 

approach such as that suggested in this paper. To sum up, the LCOE foresight model should 

be utilized in future government R&D decision-making because it brings to light important 

information, including the technology development stage, market position, and learning rate, 

all of which are unaddressed in analyses of past performance. 
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Table 1. Research on government-supported R&D program assessment 

Topic Research Question References

R&D logic 

models

· How should we define R&D processes? 

· What are the characteristics of each R&D stage? 

· Which performance index best represents the 

purposes of R&D programs? 

[63–65]

Analytical 

methodology

· Which methodology should be applied to evaluate the 

efficiency of government investment? 

· What is the most robust model for analyzing the 

macroscopic/microscopic ripple effects of R&D?

[64,66–72]

Empirical 

analysis

· What are the results of performance analyses of 

national R&D programs involving real data? What are 

the points for improvement?

[73–81]



Table 2. Stages of technological development and typical characteristics 

Stage Mechanism Cost
Market 

share

Learning 

rate

Invention Trial and error High 0% N/A

Innovation R&D projects High 0% >50%

Niche 

market

Identification of special niche 

commercialization 

applications; learning by doing

High, but 

declining
0~5% 20~40%

Pervasive 

diffusion

Standardization and mass 

production; economies of scale

Rapidly 

declining

Rapidly 

rising 

(5~50%)

10~30%

Saturation
Exhaustion of improvement 

potentials and scale economies
Low

Maximum 

(up to 

100%)

Near 0%

Senescence
Inability to compete because of 

exhausted improvement potentials
Low Declining Near 0%



Table 3. Technologies and definitions included in our analysis 

Technology Subcategory

Fuel cell Molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC) 

Solar PV Utility scale PV system w/o ESS

Wind Onshore, offshore (MW-class) w/o ESS

New coal Ultra-super critical power plant (USC, maximum temperature≥600℃) 

Hyper-super critical power plant (HSC, maximum temperature ≥700℃)

New gas 

CCGT

F-class gas turbine (1300℃ class) 

G-class gas turbine (1400℃ class) 

H-class gas turbine (1500℃ class)

Nuclear 

energy

Advanced power reactor plus (APR+)



Table 4. Definitions of variables included in the regression analysis 

Variables Definition

Government R&D 

investment
Subsidy of R&D activities by the government

R&D investment of 

beneficiary company
R&D investment by a beneficiary company

Consortia number
The number of companies participating in a given R&D 

project

Technology performance 

level

Relative level of technology compared to the highest 

performing company

Technology readiness level
Maturity of critical technology-related elements of a program 

during the acquisition process [82]

Additional investment after 

R&D

Investment from beneficiary companies after completion of 

R&D (customized R&D, investment in facilities, etc.)

Company sales
Sales of beneficiary company resulting from technology 

developed through R&D project



Table 5. Results of probit analysis 

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 

Variables Renewable power  

(solar PV, wind, fuel cell)

Conventional power plant-based 

new technology 

(new coal, new gas CCGT, nuclear 

energy)

Government R&D 

investment

0.003 

(0.006)

0.008* 

(0.005)

R&D budgeting in 

beneficiary companies

-0.014* 

(0.007)

-0.010 

(0.009)

Number of consortia 0.058 

(0.042)

0.027 

(0.055)

Project period 0.148 

(0.113)

0.016 

(0.117)

Initial technology level -0.000 

(0.004)

0.012* 

(0.006)

Initial TRL 0.390*** 

(0.133)

0.395*** 

(0.146)

Additional investment 

after R&D

0.084*** 

(0.030)

0.924** 

(0.378)

Constant -3.879*** 

(0.878)

-4.337*** 

(1.027)

Observations 207 177



Table 6. Results of the OLS analysis 

Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1 

Variables Renewable power  

(solar PV, wind, fuel cell)

Conventional power plant-

based 

new technology 

(new coal, new gas CCGT, 

nuclear energy)

ln(government R&D 

investment)

0.523 

(0.543)

0.310* 

(0.158)

ln(R&D investment from 

beneficiary company)

-0.097 

(0.330)

0.428** 

(0.158)

Number of consortia 0.105 

(0.147)

-0.096 

(0.117)

Project period -0.330 

(0.366)

0.330 

(0.225)

Initial technology level 0.013 

(0.012)

-0.008 

(0.011)

Initial TRL 0.431 

(0.433)

0.154 

(0.255)

ln(additional investment after 

R&D)

0.056 

(0.103)

0.274*** 

(0.073)

Constant 0.262 

(3.986)

0.691 

(1.961)

Observations 58 36

R2 0.278 0.606



Table 7. Learning rate in the current policy scenario 

Technology
Learning Rate

2013–2015 2015–2020 2020–2025 2025–2030 2030–2035

Fuel cell - - - - -

Solar PV 4.3% 17.3% 76.6% 18.9% 0.3%

Wind power 40.2% 11.7% 18.5% 29.5% 4.7%

New coal 0.0% 6.2% 2.9% 0.0% 0.0%

New gas 

CCGT
0.0% 0.0% 0.0% 0.0% 0.0%

Nuclear energy - 0.0% 0.0% 0.5% 0.3%



Table 8. Learning rate in enhanced R&D scenario 

Technology Learning Rate

　 2013–2015 2015–2020 2020–2025 2025–2030 2030–2035

Fuel cell - - 49.1% 57.1% 0.9%

Solar PV 9.7% 43.1% 77.6% 84.6% 2.2%

Wind power 7.7% 13.3% 22.8% 37.4% 2.2%

New coal 0.0% 4.2% 2.3% 0.0% 0.0%

N e w g a s 

CCGT
1.9% 9.3%  4.3% 5.6% 1.8%

N u c l e a r 

energy
- 0.0% 0.0% 0.4% 0.2%



Table 9. Technology development according to R&D investment (2015→2035) 

Technology Learning Rate Market Share Technology development stage

Fuel cell 12.2% 0% → 2.2% Innovation→Niche market

Solar PV
18.4% 0.6% → 5.7% Innovation→Niche 

market→Pervasive diffusion

Wind power 16.2% 2.8% → 8.1% Niche market→Pervasive diffusion

New coal 2.4% 66.6% → 42.7% Saturation→ Senescence

New gas 

CCGT

9.9% 21% → 12.8% Senescence→ Pervasive diffusion

Nuclear 

energy

0.1% 9.0% → 28.5% Saturation→ Senescence



Figure 1. Research process 
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Figure 2. Cost reduction potential as derived from cost structure (solar PV) 

(1) Current cost structure of solar PV (utility scale)

(2) Key parameters for cost reduction

Parameter Effect on costs 

Wire saw Kerf-loss reduction 

Wafer Increase in minority carrier lifetime (MCLT)  

Passivation equipment Diffuse suppressed by forming a protective film on the cell 

PCS Increase in conversion efficiency and durability 

Metal paste More efficient movement of electrons 

Ribbon Improved adhesion between cells 

Black sheet Protected from foreign substances 

(3) Outlook for cost reduction (2013~2035)
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Figure 3. LCOE of power-generating technology in 2015 
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Figure 4. Learning curve in the current policy scenario 
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Figure 5. Learning curve in enhanced R&D scenario 

!  

Figure 6. Market share of electricity-generating technologies in the current policy scenario 
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Figure 7. Market share of electricity-generating in the enhanced R&D scenario 
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