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The rapid growth and increasing applications of cryptocurrencies are the main factors that drive
the cryptocurrency to be considered as a potential asset in investment portfolios. However, recent
fierce ups-and-downs, as well as extreme market volatility, have cast doubts on classifying the cryp-
tocurrency as an asset. To investigate the characteristics of cryptocurrencies, we compare Bitcoin,
one of the most popular cryptocurrencies, with other major investment assets. Our analysis focuses
on the efficient-market hypothesis and the long-term market equilibrium, measured by the Hurst
exponent and Shannon entropy, respectively. It is suggested that the bitcoin market is less efficient
than other markets, while not significantly different from others in terms of the market equilib-
rium in the long run. To elucidate these properties, we probe the Fokker–Planck and Schrödinger
equations and derive a probability density function, considering the speed of mean reversion and
dispersion.

Subject Areas: Complex Systems, Nonlinear Dynamics, Statistical Physics

I. INTRODUCTION

Over the past decade, cryptocurrency markets, includ-
ing Bitcoin, have experienced tremendous growth. How-
ever, trading markets and systems remain unstable and
are characterized by extreme volatility and bubbles [1–4].
While cryptocurrencies [5] have a clear influence on the
financial industry, their fundamental characteristics, as
well as how they are distinguished from other investment
assets, have yet to be revealed [2].

Since its introduction, Bitcoin has innovated and chal-
lenged monetary and financial systems [6], raising fun-
damental questions about the meaning of “money” [7].
Therefore, studies comparing Bitcoin with other assets,
such as gold, stocks, and the U.S. dollar, are essential for
helping policymakers, economists, investors, and other
stakeholders understand cryptocurrencies.

The latest on Bitcoin research has mainly provided
parsimonious approximations to volatility dynamics and
examined scaling exponent, leverage effects, and long-
term memory, common among other financial assets [8–
11]. Another stream of literature focused on the prop-
erties of Bitcoin as a part of financial assets; in partic-
ular, studies documented that Bitcoin is similar to gold
in terms of scarcity, mining costs, and hedging functions
[9, 12, 13]. Some authors opined that Bitcoin is similar
to the U.S. dollar since it is both a medium of exchange
and a method of transactions [12, 14–16]. Conversely,
others reported that Bitcoin is distinct from traditional
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assets, such as the U.S. dollar and gold [17], due to its
highly speculative and unique risk-return characteristics,
even including the possibility of price manipulation [18].
In sum, a definitive asset classification of Bitcoin has yet
to be established.

Therefore, we set the following research questions to
resolve the ambiguity of Bitcoin as an investment asset
and examine the nature of its market conditions. How is
Bitcoin different from traditional assets in terms of the
weak-form efficient market hypothesis (EMH) [19] and
in relation to the overall market (system) equilibrium?
In addition, what are the theoretical fundamentals ex-
plaining the differences between Bitcoin and traditional
assets? The (weak-form) EMH is related to the char-
acteristics of the market whether asset prices reflect all
available (price) information, while the equilibrium indi-
cates the state of a market in which all competing in-
fluences are balanced. Thereby, these questions are well
expected to deepen our fundamental understandings of
the cryptocurrency markets represented by Bitcoin.

In this study, we conduct a time-series analysis of tra-
ditional assets, specifically, gold, the U.S. dollar, and
a stock index (S&P 500) and compare the results with
those of Bitcoin. We first examine market efficiency and
collective phenomena through the use of Hurst exponent
(HE) and a scaling exponent, and carry out a symbolic
time-series analysis (STSA) to probe the dispersion of
dynamic rise-fall patterns by means of the Shannon en-
tropy. We further derive a probability density function
(PDF) evolving in time, which explains the relationship
among the market efficiency, collective phenomena, and
long-term equilibrium in association with the speed of
mean reversion and dispersion.
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Ultimately, this paper establishes a theoretical basis for
revealing market characteristics not yet clarified in liter-
ature. Existing studies mainly focused on return volatil-
ity, an approach that emphasizes ex-post analysis. Unlike
such studies, we conclude that the dispersion of probabil-
ity allocation in each state, namely entropy [20], is differ-
ent from general expectations, such as return volatility
and market efficiency. We further explain theoretically
the market efficiency, long-term equilibrium, and scale
invariance property of Bitcoin and other selected assets,
deriving a time-dependent PDF that reflects the speed of
mean reversion and dispersion in the markets.

This paper is organized as follows: Sec. II lays out the
theoretical framework. In Sec. III, the methodology and
the data are presented, whereas Sec. IV discusses the
result. Finally, a conclusion is given in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we follow Ahn et al. [21] to de-
rive Laplace distribution of asset returns from the
Schrödinger equation, which is obtained from the
Fokker–Planck (FP) equation. The model also predicts
the connection between the power-law exponent (PLE)
and the speed of mean reversion, a proxy for market ef-
ficiency.

Asset returns are defined as follows:

x ≡ ln

(
pt+δt
pt

)
,

where pt represents the asset price at time t. The time
evolution of the asset returns is governed by the stochas-
tic differential equation (SDE):

dx = v(x, t)dt+ σ(y, t)dWt,

where Wt is a standard Wiener process. We assume that
the drift of asset returns arises from an external potential
V (x, t) in the following manner:

v(x, t) = −∂V (x, t)

∂x
≡ −Vx,

which is analogous to classical mechanics. We further
define the diffusion coefficient

D(x, t) ≡ 1

2
σ2(x, t)

and express the above SDE as the FP equation for the
PDF ρ(x, t):

∂

∂t
ρ(x, t) =

∂2

∂x2
[D(x, t)ρ(x, t)] +

∂

∂x
[Vxρ(x, t)]. (1)

For simplicity, we also assume that the diffusion coeffi-
cient is a constant, i.e., D(x, t) = D. Then Equation (1)
takes the concise form:

∂

∂t
ρ(x, t) = L̂ρ(x, t), (2)

where the FP operator reads L̂ = Vxx + Vx
∂
∂x +D ∂2

∂x2 .
To solve Equation (2), we first examine its steady-state

solution ρs(x), satisfying L̂ρs(x) = 0 . A simple func-
tional form of ρs(x) is given by Putz [22]:

ρs(x) =
1

C
exp

(
−V (x)

D

)
,

where C ≡
∫ +∞
−∞ exp

(
−V (x)

D

)
dx is the normalization

constant. We now introduce the “wave function” Ψ(x, t)

and Hermitian operator Ĥ via

Ψ(x, t) ≡ ρ(x, t)√
ρs(x)

L̂ρ(x, t) ≡ −
√
ρs(x)ĤΨ(x, t),

which yields Ĥ = − 1
2Vxx+ 1

4DV
2
x −D ∂2

∂x2 . Then, with the

imaginary time τ ≡ −i~t and mass m ≡ ~2

2D , Equation
(2) can be rearranged into the Schrödinger equation

i~
∂

∂τ
Ψ(x, τ) = ĤΨ(x, τ)

≡
(
− ~2

2m

∂2

∂x2
+ U(x)

)
Ψ(x, τ), (3)

where the effective potential U(x) is given by

U(x) = −Vxx
2

+
V 2
x

4D
.

Financial time series tend to exhibit a mean reversion
[23]. There is literature documenting contrarian effects
in stock markets around the world [24–26]. Relatively
high or low asset returns will revert to the equilibrium,
indicating that an external potential stabilizes short-term
fluctuations toward the long-term equilibrium. We thus
take V (x) = α|x−a| as a simple model for the potential:
If asset returns deviate from the equilibrium return a,
the market field will draw the asset returns back to a at
the constant speed of α.

One plausible explanation about the mean-reverting
features of asset returns is the divergence between funda-
mental and market values, which causes arbitrage trad-
ing. Speculative investors eventually eliminate the dif-
ferences between the two [27]. Owing to the leptokurtic
features of asset returns and mean reversion driven by
market forces, asset returns mostly remain in sidewalk
markets [28]. While Ahn et al. [21] proposed a harmonic
oscillator to model this potential, we define it here to have
a constant speed of mean reversion. The return distri-
bution modeled with a quantum harmonic oscillator has
a tail that diminishes in proportion to exp(−x2), which
is too fast when Bitcoin returns are severely leptokur-
tic and highly volatile. It is thus not quite conceivable
that a larger market force affects the returns toward the
long-term mean level when they are moving away from



3

it. Therefore, we assume that the restoring speed from
realized returns to the long-term equilibrium is constant.

Given V (x) = α|x− a|, we have the effective potential

U(x) = −αδ(x− a) +
α2

4D
,

where δ(·) is a Dirac delta function, and the extra drift
α2

4D does not affect the wave function [29]. We thus obtain
the following time-independent Schrödinger equation(

E − α2

4D

)
ψ(x) = Ĥψ(x) = − ~2

2m

∂2

∂x2
ψ(x)

− αδ(x− a)ψ(x),

which can be solved easily. Specifically, the ground-state
solution is given by

ψ0(x) =

√
mα

~
exp

(
−mα

~2
|x− a|

)
,

with energy E = E0 ≡ −mα
2

2~2 + α2

4D = 0 [30], whereas
other solutions describing continuum states read, apart
from normalization,

ψk(x) = eik(x−a) +
mα

mα− i~k2
eik|x−a|

with energy E = Ek ≡ ~2k2

2m + α2

4D > 0. Accordingly,
Equation (3) bears the general solution of the form

Ψ(x, τ) = Aψ0(x)e−
iE0τ

~ + ∫ dkA(k)ψk(x)e−
iEkτ

~ .

The PDF then takes the form

ρ(x, t) =
√
ρs(x)Ψ(x, τ = −i~t)

=
√
ρs(x)[Aψ0(x) + ∫ dkA(k)ψk(x)e−Ekt], (4)

which reduces in the asymptotic limit (t→∞) to

ρ(x) ≡ ρ(x, t→∞) =
√
ρs(x)Aψ0(x)

=

√
α

2D
A exp

(
− α
D
|x− a|

)
.

Putting the normalization constant A, we finally ob-
tain the PDF corresponding to a Laplace distribution:

ρ(x) =
α

2D
exp

(
− α
D
|x− a|

)
. (5)

From Equation (5), we can also obtain the tail dis-
tribution of asset returns. Defining the gross return
Y ≡ pt+∆t

pt
= ex, we have, for the right tail satisfying

y > ea,

P (Y ≥ y) = P (x ≥ ln y) =

∫ +∞

ln y

α

2D
e−

α
D |x−a|dx ≈ y− α

D

(6)
which follows the power-law distribution with the expo-
nent α

D . Furthermore, the entropy of a Laplace distribu-
tion is given by [31–33]:

H(x) = ln

(
2D

α

)
+ 1. (7)

Equations (4) to (7) lead us to summarize the dynamic
characteristics of asset returns as follows: (i) In short
times, Equation (4) manifests that time t affects the ex-
ponent, and the PDF varies following α2. As shown in
Fig. 1, the higher the speed α of the mean reversion pro-
cess, the greater the sensitivity to changes in t. (ii) In the
case of long-time dynamics, described by Equation(5),
the exponential part of the Laplace distribution changes
with the relative values of α and D. In particular, when α
is larger than D, the entire distribution becomes steeper.
(iii) The right tail of the Laplace distribution in Equa-
tion (6) is characterized by the PLE, given by the ratio
of α to D. Accordingly, the estimated values of the PLE
can be used for demonstrating the EMH. For instance,
if the estimated value of the PLE of a particular asset
increases, either α should increase or D should decrease.
A decrease of α, in particular, can be interpreted as an
enhancement in the overall market efficiency. (iv) Fi-
nally, since the entropy of a Laplace distribution can be
expressed as a linear function of volatility [31, 33], we
can estimate the market equilibrium with the relation-
ship between the Laplace exponent and entropy, given
by Equation (7).

III. EMPIRICAL ANALYSIS

A. Hurst Exponent

We first analyze the rescaled adjusted range statistics,
denoted by (R/S)n, following Hurst [34, 35] and Man-
delbrot and Wallis [36, 37]:

(R/S)n = cnH ,

where n is the length of the fractioned time series, c is
a constant, and H is the HE. Taking the logarithm, we
can estimate the HE as the slope of the data fitted to

log(R/S)n = log c+H log n.

The R/S statistics and the standard deviation Sn are
determined as follows:

(R/S)n =
1

Sn

[
max
1≤t≤n

t∑
i=1

(ri − r̄n)− min
1≤t≤n

t∑
i=1

(ri − r̄n)

]

Sn =

[
1
n

t∑
i=1

(ri − r̄n)2
]1/2

,

where t is a specific point in the time series, ri is the re-
turn at time i, and r̄n is the average of time-series returns
divided by length n.

Ranging from 0 to 1, the HE H measures the mar-
ket efficiency, long-term memory, and fractality of time
series [38]. Based on the estimated value of H in the
above equation, the diffusion process of time series can
be classified into the following three categories: (i) a ran-
dom walk for H = 0.5, interpreted here as a special case
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FIG. 1. Plots of the PDF for Bitcoin (solid lines) and gold (dashed lines) at time t = 0, 1000, 2000, and 3000, based on
Equation (4) for given α and D. Bitcoin has a large value of α (∼ 10−3), and the other assets including gold have small values
of α (∼ 10−5). Since those other assets are similar in the PDF, only the PDF of gold is presented among them.

of fractional Brownian motion; (ii) an anti-persistent se-
ries for 0 < H < 0.5, representing the mean-reverting
property; and (iii) a persistent series for 0.5 < H < 1,
exhibiting long-term positive autocorrelations.

B. Power Law

We estimate the PLE of log returns to evaluate the
collective phenomenon in terms of the scaling exponent
in the markets. The PLE is estimated from the follow-
ing counter-cumulative density function (also known as
a survival function):

1− F (x) = P (X > x) ∝ x−ξ,

where F (x) is a cumulative density function and ξ is the
PLE. Taking the logarithm on both sides of the above
equation, we obtain the following linear relationship:

lnP (X > x) = c− ξ lnx+ ε,

where c is a constant and ε is an error term following
the normal distribution (i.i.d.). The PLE is usually esti-
mated as the slope of the above equation. The estimated

PLE has an asymptotic standard error of ξ̂(m/2)−1/2,
where m is the number of observed samples [39].

The commonly used ordinary least-squares (OLS)
method may yield inaccurate PLE estimates. In some
cases, where the OLS estimation is accurate, the results
can be unsatisfactory, as there is no indication of whether
the data obey a power law. Additionally, OLS estimates
are subject to the following systematic and potential er-
rors: (i) OLS cannot describe errors accurately in the log
histogram for power-law analysis; (ii) OLS can produce
high R2 values, even if the actual form of the distribu-
tion does not follow a power law; and (iii) OLS-based
power-law estimation does not satisfy the basic require-
ments of a probability distribution, such as normalization
[40]. We therefore estimate the PLE based on the Kol-
mogorov–Smirnov (KS) statistics as well.

C. Entropy

Finally, we calculate the STSA entropy of discrete ran-
dom variables. According to Shannon [41], the entropy
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TABLE I. Descriptive statistics of daily log returns. Observations are made on a total of 2,053 trading days among 3,014 days
in the sample period from October 1, 2010 to December 31, 2018.

Mean Min. Max. Std. Skewness Kurtosis
Bitcoin 5.29 × 10−3 -1.04 1.00 0.07 0.43 50.53

USD/EUR −5.45 × 10−5 -0.03 0.03 0.01 -0.01 4.71
Gold 1.24 × 10−5 -0.10 0.05 0.01 -0.57 10.04

S&P 500 4.02 × 10−4 -0.07 0.05 0.01 -0.59 7.87

of the discrete random variable X is given by

H(X) = −
M∑
i=1

p(xi) ln p(xi),

where M is the number of possible outcomes of the ran-
dom variable X and p(xi) is the probability that each
outcome of experiments is assigned to X = xi. Since
entropy measures the dispersion of the probability allo-
cation rather than that of observed outcomes, entropy is
more robust to extreme observations [31]. Typically, en-
tropy is the highest when the randomness of the system
is maximal and lowest when randomness is minimal or
complete information is given. In this fashion, entropy
provides better information about the underlying distri-
bution of random variables and serves as a more appro-
priate measure of uncertainty than volatility [33, 42, 43].

Moreover, since the STSA method is resistant to noise,
it is widely applied in physics, information theory, and
finance [33, 44]. Following Ahn et al. [33], we symbolize
the real values of data into a series of sequence bundles
composed of binary numbers. Each sequence consists of
the consecutive returns of an asset S, expressed as 1 for
positive returns and 0 otherwise. It is then converted
to a decimal number XS . Applying such transformation
to all the sequences on a daily basis, we finally write
the Shannon entropy of the discrete variable XS in the
following form:

H(XS) = −
M−S∑
i=1

p(xSi ) log2 p(x
S
i ).

To make up for the increase of H(XS) with S, we
further normalize the Shannon entropy as follows:

h(XS) =
1

S
H(XS).

In this paper, we take S = 3 (robustness for S = 2 and
4 has been checked as well) and, by means of the STSA,
identify the time-varying patterns in log returns. Ruiz
et al. [45] and Ahn et al. [33] reported that the STSA
entropy better captures uncertainty in a financial time
series than the histogram-based entropy.

D. Data

To compare the characteristics of each asset, we re-
fer to daily data for Bitcoin (price), gold (price), the

U.S. dollar (USD/EUR exchange rate), and the stock in-
dex (S&P 500). Bitcoin prices have been collected from
Quandl.com, and gold prices retrieved from the World
Gold Council. USD/EUR exchange rates and S&P 500
data have been obtained from the Federal Reserve Bank
of St. Louis. Bitcoin exchanges never close, and we have
sampled the Bitcoin price from October 1, 2010 to De-
cember 31, 2018 (3,014 days). On the other hand, data
for the other three assets are available only on trading
days. Accordingly, we have matched Bitcoin data with
the data for the other three assets. As a result, we have
obtained 2,053 observations of daily data for each of the
four assets.

As shown in Table I, the mean, maximum, minimum,
and standard deviation of Bitcoin’s daily log returns are
relatively large compared with those of the other asset
classes [2, 46–48]. The return distribution of other as-
sets is characterized by negative skewness, which implies
investors’ risk-averse attitudes [49, 50]. Bitcoin, how-
ever, shows positive skewness, similar to emerging stock
markets. Bitcoin also has a more leptokurtic feature
than others, which leads to a heavy tail in its return
distribution and provides some clues about collective be-
havior [51]. Moreover, all the time-series data are non-
stationary; we thus take the difference in log prices, which
are stationary, for further analysis.

As shown in Fig. 2, the daily log returns of Bitcoin, as
well as other assets, are described well by a Laplace distri-
bution rather than a Gaussian distribution [55–59]. The
Laplace distribution is leptokurtic, allocating the prob-
ability distribution more at the peak and tails, and dis-
plays decay at both tails slower than a normal distribu-
tion resulting in scaling phenomena. Its entropy reaches
the maximum under specific constraints on the dispersion
[32]. The fact that all the four assets well follow Laplace
distributions thus implies that they share certain mar-
ket characteristics related to the scaling exponent and
entropy.

IV. RESULTS AND DISCUSSION

Considering both HE and PLE, we conclude that the
bitcoin market is less efficient than other asset markets.
With regard to the EMH [60, 61], Bitcoin (H > 0.5) is
distinguished from the other assets (H ' 0.5), which re-
semble a random walk, and our findings are generally in
line with Bariviera et al. [62], Bariviera [63], and Al-
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FIG. 2. Histogram of log returns. The optimal bin size of the histogram has been taken to be the mean of the values calculated
in the way following Sturges [52], Scott [53], and Freedman et al. [54]. Each asset appears to follow a Laplace distribution
rather than a Gaussian distribution.

Yahyaee et al. [64]. In particular, as shown in Table II,
the bitcoin market demonstrates long-term memory ef-
fects (H ≈ 0.60±0.04) and the market efficiency is lower
due to its self-referential nature [38, 65]. It is further
confirmed by the PLE of Bitcoin (taking the value ap-
proximately 0.50), appreciably smaller than that of the
other assets (ξ ≥ 1), in the right tail of the distribution.
We consider such a low value of the PLE to be a sig-
nature for important phenomena with regard to market
efficiency [66]. Note that the fractal structure in time
series indicates the underlying presence of herding be-
havior: In particular, the change in the PLE implies a
transition from efficient market trading to herding be-
havior [67]. Accordingly, the relative inefficiency of the
bitcoin market is observed in both the entire sample (HE)
and the right tail (PLE).

The Laplace distribution is characterized by allocating
more probability at the peak and tails compared with its
counterpart, i.e., Gaussian distribution. Considering the
mean reversion speed α and the diffusion coefficient D,
which collaborate on forming the peak and tails of a cer-
tain distribution together, we could conjecture the degree
of market efficiency. As can be seen in Fig. 3, the condi-

tional volatility of Bitcoin is considerably high compared
with other assets and results in a high diffusion coefficient
[31]. The market efficiency closely relates to the rate of
diffusion of a series [68] in comparison with the rate of
diffusion in a geometric Brownian motion (GBM). There-
fore, the diffusive feature of the bitcoin market primarily
contributes to more probability allocation at the tails of
the distribution, resulting in low market efficiency. More-
over, the mean reversion speed of Bitcoin, much faster
than the other assets, further supports our findings. The
higher value of α implies more probability allocation at
the peak, compared with its benchmark, i.e., GBM whose
α is defined to be 0 in Equation (6). Put differently, the
slow speed of the mean reversion (i.e., the smaller value
of α) in log returns implies the price process is close to a
random walk in our setting. Thereby, the bitcoin market
is concluded inefficient compared with the others as it
exhibits more leptokurtic features with large α and D.

On the other hand, Bitcoin and the other assets are
similar in the market’s long-term equilibrium of dynamic
rise and fall patterns. As can be seen in both Table
III and Fig. 4, there is no significant difference between
the STSA entropy of Bitcoin and that of other assets.
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TABLE II. Summary of market efficiency and scale invariance. To confirm the robustness, we estimate both the classical and
the corrected HE. The mean reversion speed α has been obtained via multiplying the PLE by the dispersion of each asset
(α = ξD). Additionally, we find that both the OLS and KS methods do not yield significantly different values of the PLE.

Hurst Exponent
Speed of

Mean Reversion
Power-Law Exponent

Classical Corrected OLS KS stat
Bitcoin 0.67 ± 0.04 0.60 ± 0.04 (1.33 ± 0.05)× 10−3 0.51 ± 0.06 0.50 ± 0.02

USD/EUR 0.57 ± 0.04 0.51 ± 0.03 (2.27 ± 0.04)× 10−5 1.45 ± 0.17 1.36 ± 0.02
Gold 0.55 ± 0.04 0.48 ± 0.02 (6.66 ± 0.08)× 10−5 1.28 ± 0.15 1.14 ± 0.02

S&P 500 0.52 ± 0.04 0.45 ± 0.03 (5.38 ± 0.09)× 10−5 1.30 ± 0.15 1.22 ± 0.02

2011 2012 2013 2014 2015 2016 2017 2018 2019

t

-5

-4

-3

-2

-1

lo
g
 

 

Bitcoin

USD/EUR

Gold

S&P 500

FIG. 3. The conditional volatility, computed via the
GARCH(1,1) model from daily log returns for each asset class,
is presented on the log scale. Bitcoin is around 40 times more
volatile than the other assets, which remain relatively con-
stant over time.

This is somewhat odd: The entropy of the bitcoin mar-
ket might be significantly different from other markets
because the Shannon entropy is known to have a lin-
ear relation with volatility for a particularly well-defined
distribution [31, 33]. However, the STSA entropy, un-
like the entropy constructed out of raw data (quantile
or histogram-based), reflects the dynamic rise and fall
patterns of several consecutive returns rather than the
variation of a single return [33, 69], which implies not a
simple linear transformation of volatility. As explained
by Equation (7), the even quantile or histogram-based
entropy becomes large or small by the composition of
α and D together. In particular, the internal dynamics
of the market can fluctuate according to the mean rever-
sion speed and volatility, implying that long-term market
equilibrium might be different depending on the compo-
sition of α and D, apart from the market efficiency.

As shown in Fig. 5, the scaling exponent of the return
distribution in the bitcoin market tends to increase from
0.62 (2011) to 1.79 (2018) and results in the collective
behavior of degree similar to other markets [70]. Each es-

TABLE III. Monthly STSA entropy for each asset from Oc-
tober 1, 2010 to December 31, 2018. The entropy of Bitcoin
does not appear to be significantly different from that of other
assets.

Mean Mode Median Min. Max.
Bitcoin 0.87 0.83 0.87 0.55 0.98
USD/EUR 0.86 0.89 0.88 0.52 0.98
Gold 0.86 0.89 0.88 0.57 0.98
S&P 500 0.86 0.97 0.87 0.61 0.98

timated value of the PLE in the bitcoin market is located
in the range of the Levy-stable region (colored gray) and
below the decay limit (designated by the horizontal dot-
ted line) like other assets. At the same time, both α and
D have decreased and resulted in the relocation at the
peak and tails, closer to Gaussian. Therefore, α and D,
individually and together, have improved the overall ef-
ficiency of the bitcoin market, synchronizing with other
markets [71, 72]. Our findings also explain well the con-
troversy in previous studies, as to whether the bitcoin
market becomes efficient or not: acceptance or rejection
of EMH over time [62, 73–78].

In Sec. II, from the FP and Schrödinger equations, we
have shown that the PDF of log returns under the poten-
tial of V (x) = α|x− a| results in a Laplace distribution.
The market efficiency could be well characterized by the
expression α

D (> 0), which corresponds to the scale pa-
rameter of the PDF: (i) Bitcoin has a relatively larger
value of dispersion; (ii) the mean reversion speed of the
Bitcoin return is much faster than that of the other as-
sets; and (iii) Bitcoin has a smaller value of the PLE than
other assets as the faster mean reversion speed cannot
catch up the larger value of dispersion. In other words,
the overall effects of the scaling exponent and mean revi-
sion speed together explain well the market efficiency of
the bitcoin market. We postulate that non-commercial
speculative trading [18] might lead to low complexity in
the bitcoin market and create self-sustaining dynamics
having positive feedback, resulting in market inefficiency
due to slower decay at the tail and faster mean-reverting
speed at the peak. However, if the entropy of the sys-
tem is not maximized and the components of the system
interact with each other directly or indirectly, then any
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FIG. 4. The STSA entropy for each asset has been obtained from daily rise-fall patterns with the bin size of 0.06. We have
also varied the bin size from 0.05 to 0.07 to confirm the robustness of our results.

path that allows the entropy to increase will be finally re-
alized. Then the log return distribution derived from the
mean-reverting potential V (x) should ultimately proceed
toward a distribution that maximizes the entropy, i.e., a
Laplace distribution. Therefore, in the current state, the
degree of the market equilibrium is not significantly dif-
ferent among the assets.

V. CONCLUSION

We find that the bitcoin market is currently at an in-
termediate stage of development, not consistent with the
EMH. However, with respect to the spread of the proba-
bility assigned to each state, the bitcoin market is not far
from equilibrium in comparison with other assets. Ulti-
mately, our findings underscore the relative immaturity
of the bitcoin market, described well by a Laplace distri-
bution, with the constant restoring speed from realized
returns to the long-term equilibrium.

This study not only presents the unique position of Bit-
coin as an asset but also provides a new understanding of
market efficiency. In particular, the probability distribu-
tion and its relocation at the peak and tails would deter-

mine the degree of market efficiency. On the other hand,
in terms of market maturity, while the bitcoin market has
not yet matured, its properties are not too far from that
of others. In addition, the relationship between complex-
ity and entropy might provide a better understanding of
the future of cryptocurrencies, which is left for further
study.
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FIG. 5. Evolution of the bitcoin market properties. The esti-
mated values of the PLE are marked with an empty circle in
the regression line (black), where each error bar corresponds
to one standard deviation. They are located within the Levy-
stable region colored gray. The blue zone represents the range
of the PLE of the other assets, including one standard devi-
ation. Calculated values of the mean reversion speed α and
dispersion D are also plotted with an empty circle in the re-
gression lines (red and blue, respectively), where each error
bar corresponds to one standard deviation.
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